Personalized Content-Based Image Retrieval
نویسنده
چکیده
ABStrAct In content-based image retrieval (CBIR), a set of low-level features are extracted from an image to represent its visual content. Retrieval is performed by image example where a query image is given as input by the user and an appropriate similarity measure is used to find the best matches in the corresponding feature space. This approach suffers from the fact that there is a large discrepancy between the low-level visual features that one can extract from an image and the semantic interpretation of the image's content that a particular user may have in a given situation. That is, users seek semantic similarity, but we can only provide similarity based on low-level visual features extracted from the raw pixel data, a situation known as the semantic gap. The selection of an appropriate similarity measure is thus an important problem. Since visual content can be represented by different attributes, the combination and importance of each set of features varies according to the user's semantic intent. Thus, the retrieval strategy should be adaptive so that it can accommodate the preferences of different users. Relevance feedback (RF) learning has been proposed as a technique aimed at reducing the semantic gap. It works by gathering semantic information from user interaction. Based on the user's feedback on the retrieval results, the retrieval scheme is adjusted. By providing an image similarity measure under human perception, RF learning can be seen as a form of supervised learning that finds relations between high-level semantic interpretations and low-level visual properties. That is, the feedback obtained within a single query session is used to personalize the retrieval strategy and thus enhance retrieval performance. In this chapter we present an overview of CBIR and related work on RF learning. We also present our own previous work on a RF learning-based probabilistic region relevance learning algorithm for automatically estimating the importance of each region in an image based on the user's semantic intent.
منابع مشابه
Image retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملTowards Personalized Image Retrieval
This paper describes an approach to personalized image indexing and retrieval. To tackle the issue of subjectivity in Content-Based Image Retrieval (CBIR), users can define their own indexing vocabulary and make the system learn it. These indexing concepts may be both local (objects) and global (image categories). The system guides the user in the selection of relevant training examples. Concep...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کامل